diketahui matriks a 2 3 2

Anakbaru99perkalian matriks ordo 3×2. Misalkan a = adalah matriks yang . Perkalian matriks ordo 3x1 dengan ordo 1x2, diperoleh sebagai berikut. Perkalian skalar dengan matriks, dan perkalian dua matriks. Cara Perkalian Matriks 2x2, 3x3, Dst Dan Contoh Soal Lengkap from perkalian matriks ordo 3x2 dan 2x3. Determinan. Matriksdi atas bernama matriks A. Matriks A merupakan matriks 3 x 2, yang menandakan matriks tersebut memiliki 3 baris dan 2 kolom. Isi dari matriks tersebut disebut elemen. Penulisan matriks adalah A xy A menandakan nama matriks diketahui 2 buah matriks A dan B, matriks hasil penjumlahan kedua matriks mempunyai elemen- Jikadiketahui, P dan Q ialah matriks 2 2 ! Bila P-1 ialah invers matriks P dan Q-1 ialah invers matriks Q, maka tentukan nilai dari determinan matriks P-1.Q-1 adalah . a. 223. Diketahuimatriks A = 2 1 1 3 4 3 − − dan matriks B = 2 1 0 4 4 0 . Matriks A × B adalah . A. 8 6 3 13 B. 3 6 13 8 C. 3 8 6 13 D. 0 6 8 13 E. 0 6 18 13 − − − − − 16. Seorang penjahit akan membuat 2 model baju. ViewPertemuan ke 2 MATH 101 at BPK Penabur Singgasana. NAMA : SOSHUM : 1 / 2 / 3 PERTEMUAN 2 Matriks BPK PENABUR SETEMPAT PERSIAPAN UTBK 2022 JESMERALDAW BPK PENABUR mở bài trong bài văn kể chuyện lớp 4. Kelas 11 SMAMatriksInvers Matriks ordo 2x2Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo komen di sini kita punya soal tentang matriks jika matriks A 2 seperti ini matriks b adalah seperti ini invers dari matriks A dan matriks B yaitu sama dengan sebelumnya mereka kembali disini untuk invers dari matriks 2 * 2 matriks yang memiliki 2 baris dan 2 kolom misalnya kita punya matriks m adalah abcd Maka sebagai 14 dikalikan dengan matriks m yaitu min b Min A jadi di sini perhatikan bahwa ketika kita punya untuk matriks A dan matriks B seperti ini Kita tentukan terlebih dahulu hasil perkalian dari matriks A dan matriks B dimana matriks A adalah 3152 untuk matriks b adalah min dua min 3 3/4 setelah kita mendapati hasil perkaliannya baru nanti kita kirim pesan jadi perhatikan bahwa disini kita punya perkalian dua buah matriks dimana Perkalian antara dua buah matriks berarti kita mengamalkan antara baris dengan kolom jadi misalkan kita mulai terlebih dahulu dari baris matriks A dikalikan dengan kolom pertama dari matriks B kita menggantikannya adalah kita kalikan untuk setiap elemen yang bersangkutan kalau nanti kita jumlahkan jadi misalkan tidak kita kalikan dengan 2 lalu satu ini kita kalikan 3 nanti keduanya kita jumlahkan jadi kita dapat Tuliskan saran disini 3 kita kalikan terlebih dahulu dengan yang min 2 baru nanti kita tahu 1 dikalikan dengan 3 sekarang untuk baris pertama dengan kolom yang ke-2 dari matriks B berarti 3 ini kita kalikan dengan yang lain 3 selalu nanti kita tambahkan dengan 1 yang dikalikan dengan 4 untuk baris ke-2 dan kolom yang pertama jadi 5 ini kita kalikan dengan 2 lalu ditambah dengan 2 ini kita kalikan dengan 3 dan terakhir baris kedua dengan kolom ke-2 berarti 5 dikalikan dengan min 3 ditambah dengan 2 dikalikan dengan 4 makanya kan = min 6 ditambah dengan 39 ditambah dengan 4 ditambah dengan 6 min 15 ditambah dengan 8 akan = min 3 min 5 Min 4 X min 7 jadi kita punya untuk matriks A yang dikalikan matriks B seperti ini sekarang baru kita akan mencari untuk invers nya dimana untuk matriks A yang dikalikan dengan matriks berlalu tidak invers kan kan = berarti kita ingin mencari invers dari matriks min 3 min 5 Min 4 min 7 seperti ini berarti kita dapat gunakan formula yang sebelumnya kita punya ini tentunya akan menjadi 1 per a di dalam kasus ini adalah min 3 dikalikan dengan min 7 berarti dapat kita Tuliskan seperti ini kita kurangi dengan b dikali t dimana dalam kasus ini adalah Min 5 dikalikan dengan 4 kalau kita kalikan dari matriks artinya jika kita perhatikan bahwa untuk min 7 dengan min 3 kita tukar posisinya X untuk Min 5 dan Min 4 masing-masing kita kalikan dengan 1 jadi 54 ya kita perhatikan ini adalah 21 dikurang dengan 20 tentunya 1 berarti 1 per 1 dikalikan dengan 7543 tentunya ini menjadi dirinya sendiri yaitu min 754 min 3 kita dapati untuk matriks AB adalah seperti ini maka jawaban yang tepat adalah opsi yang B sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAMatriksDeterminan Matriks ordo 2x2Diketahui matriks A = 3 2 2 x dan matriks B = 2x 3 2 x. Jika x1 dan x2 adalah akar-akar persamaan det A = det B, maka x1^2+x2^2 = ....Determinan Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0127Diketahui M =-1 50 -2 105, maka nilai dari det M^3 sa...Teks videoYa di sini kita punya soalnya yang mana diketahui matriks A 3 2 2 x dan matriks b = 2 x 32 dan X Jika x1 dan x2 adalah akar-akar dari persamaan determinan a sama dengan determinan b. Maka nilai dari X1 kuadrat ditambah dengan X2 kuadrat = titik-titik baik langsung saja kita Jawab ya di sini kuncinya yaitu determinan a sama dengan determinan b. Maka pengerjaannya kita berangkat dari sini yaitu determinan a sama dengan determinan B langsung saja kita kerjakan determinan a sama dengan hasil kali diagonal utama kemudian dikurang hasil kali diagonal lain berarti x * 3 kita punya 3 x kemudian dikurang 2 x 2 yaitu 4 = determinan determinan B itu sendiri yaitu 2 X dikali X berarti kita punya 2 x kuadrat kemudian dikurangi 6 seperti ini tinggal kita kumpulkan ya berarti kita punya 2 x kuadrat Ya seperti iniDikurang 3 x ya kemudian di sini misalnya dikurang 2 ya seperti ini nah sama dengan nol. Oke Nah inilah persamaannya Anggaplah kita punya akar-akar X1 x1 dan x2 di sini ya seperti itu sehingga tinggal kita faktorkan di sini ya kita punya faktor 2x ya 2x kemudian di sini X ya sama dengan seperti ini tadi kita punya faktor di sini - 2 kemudian di sini positif satu ya seperti ini faktornya saya nggak kita peroleh 2 x + 1 = 0 artinya x-nya = negatif 1 per 2 atau ini X1 misalnya kemudian X2 nya itu X dikurang 2 sama dengan nol berarti kita punya s y = positif 2 seperti ini sehingga mudah tinggal kita tentukan nilainya X1 kuadrat ditambah dengan X2 kuadrat kita subtitusi X satunya Min seper 2 dikuadratkan jadinya positif seperempat ya seperti itu kemudian ditambah denganKuadrat yaitu 2 kuadrat jelas = 4 seper 4 + 4, ya dapat kita tulis seperti itu jadi seperempat tambah 4 sama saja nilainya dengan 41 atau 17 per 4 seperti itu. Nah ini sesuai dengan pilihan D seperti tuna baik sampai di sini sampai jumpa lagi pada pembahasan soal-soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul LMMahasiswa/Alumni Universitas Kristen Satya Wacana07 April 2022 0216Hi, Alwi jawaban untuk pertanyaan diatas adalah [-â…“ â…“-7/3 4/3] Konsep Matriks A[a b c d] dan B[e g f h] AB = [ae+bf ag+bh ce+df cg+dh] A-¹ = 1/ad-bc [d -b -c a] KA = [ka kb kc kd] Asumsikan soal diketahui matriks A [ 2 13 2] dan matriks B[ 1 - 12 1] . matriks AB-¹ adalah AB = [2 13 2]. [ 1 - 12 1] = [ 2.-1+ 3.-1+ = [2+2 -2+13+4 -3+2] = [4 -17 -1] AB-¹ = 1/4-1-17 [-1 1-7 4] = 1/-4+7 [-1 1-7 4] = 1/3 [-1 -1 -7 4] = [-â…“ â…“-7/3 4/3] Jadi matriks AB-¹ = [-â…“ â…“-7/3 4/3] Semoga terbantu, terus gunakan ruang guru. Makasih Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan! MatematikaALJABAR Kelas 11 SMAMatriksDeterminan Matriks ordo 2x2Diketahui matriks A = 3 2 2 2 dan B = 1 2 1 3. Determinan matriks AB adalah ....Determinan Matriks ordo 2x2Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo konferensi sini terdapat soal sebagai berikut diketahui matriks A dan B kemudian determinan matriks AB adalah kita ketahui perkalian dua matriks yaitu jika matriks A B C D jika pqrs maka = a p + BR + b c + d r c + d s kemudian jika matriks A = abcd maka determinan matriks A = ad bc, maka matriks AB = matriks 3 2 2 2 * 113 = 3 * 1 + 2 * 13 * 2 + 2 * 32 * 1 + 2 * 12 * 2 + 2 * 3 = matriks 5 12 4 10 kemudian determinan AB = 5 kali 10 Min 4 x 12 = 50 Min 48 = 2determinan matriks a b = 2 yaitu B sampai jumpa di soal berikutnya

diketahui matriks a 2 3 2